Статьи

Материал для водородной энергетики

Материал для водородной энергетикиУральские ученые предложили электролитный материал для водородной энергетики, основой которого стали модифицированные редкоземельным гадолинием слоистые перовскиты. Результаты работы позволят расширить технологии «зеленой» энергетики и тем самым снизить углеродные выбросы.

Сейчас газ, нефть и каменный уголь — основные источники энергии как в нашей стране, так и за рубежом. Однако их запасы не безграничны и рано или поздно будут исчерпаны. Так, по оценкам Минприроды России, за последнее десятилетие запасы сырой нефти уменьшились почти на 30%, а газа — на 27%.

Традиционная энергетика на углеродном топливе усугубляет и глобальное потепление за счет выброса большого количества парниковых газов в атмосферу: в прошлом году поступивший объем только СО2 составил более 36,7 миллиарда тонн.

На фоне роста населения Земли и экологического кризиса все актуальнее становится разработка новых и улучшение имеющихся «зеленых» способов получения энергии. Среди них наибольшее внимание привлекает солнечная энергетика, однако она сильно зависит от угла падения лучей и не будет достаточно эффективна в приполярных регионах, а еще не способна обеспечить мощности крупных заводов.

Еще один фаворит — водородная энергетика. В ее основе лежит сгорание водорода в атмосфере кислорода, в результате чего высвобождается огромное количество энергии и получается вода, а не иные опасные для людей и природы оксиды, как в случае традиционной углеродной энергетики. Хотя такой процесс очень эффективен, высоки риски взрыва газа. В этом случае можно рассмотреть водородную энергетику с другой стороны: в ходе различных химических реакций использовать водород для получения ионов, называемых протонами, а их применять как носители заряда в новых электронных устройствах.

Сотрудники Института высокотемпературной электрохимии УрО РАН и Института водородной энергетики Уральского федерального университета (Екатеринбург) создали новый материал для водородной энергетики. В его основу легли слоистые перовскиты. Они обладают хорошей проводимостью, также на их основе можно создавать системы, где в электричество будет конвертироваться энергия химических реакций.

Классический перовскит АВО3 (где А и В — два разных элемента, а О — кислород) представляет собой сеть восьмигранников, соединенных друг с другом всеми вершинами, и каждый атом кислорода включен в эту сеть. В слоистых перовскитах AA’BO4 восьмигранники связаны в слои, отделенные друг от друга слоями с кубической структурой каменной соли. Она является более «гибкой», чем у классического перовскита, что может открывать дополнительные возможности для ее усовершенствования.

Авторы работы решили модифицировать слоистые перовскиты BaLaInO4 (Ba — барий, La — лантан, In — индий, О — кислород), добавив в них атомы редкоземельного гадолиния, который также способен увеличивать проводимость материалов. В данном случае такой эффект обусловлен тем, что в системе изначально были редкоземельные ионы — лантана, — а добавка их «родственника» гадолиния привела к большему отталкиванию восьмигранников в кристаллической решетке. В результате пространство для переноса заряженных частиц расширилось.

Эксперименты показали, что модификация улучшила проводимость материала в сухих условиях примерно в 12 раз (в сравнении с исходным материалом), при этом ее обеспечивало в основном движение ионов кислорода. Во влажной среде добавлялся еще один механизм переноса заряда — протонный, то есть теперь носителями заряда были ионы водорода, что и необходимо для создания устройств водородной энергетики. В этом случае при температурах ниже 400℃ добавка гадолиния улучшила проводимость в 20 раз.

«Наши результаты свидетельствуют в пользу того, что модифицированный слоистый перовскит может стать основой для устройств водородной энергетики. В настоящий момент мы работаем над созданием материалов, которые могли бы эффективно сочетаться по комплексу физико-химических свойств в твердооксидном топливном элементе, а также в дальнейшем планируем их тестирование в составе электрохимического устройства. Это является одной из важнейших задач, стоящих перед нами — осуществить переход от фундаментального материаловедения к дизайну электрохимических устройств, соединив, таким образом, фундаментальную и прикладную науку, — рассказывает руководитель проекта, поддержанного грантом РНФ, Наталия Тарасова, доктор химических наук, ведущий научный сотрудник лаборатории электрохимических устройств на твердооксидных протонных электролитах ИВТЭ УрО РАН и профессор Уральского федерального университета.

С исследованием, выполненным при поддержке Российского научного фонда (РНФ), можно ознакомиться на страницах журнала Materials. Источник информации «Научная Россия» (https://scientificrussia.ru/).